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ABSTRACT

The two-dimensional orthogonal function expansion t¢chnique was used to
model discrete ocean bathymetric data as a function of cross-range and down-
range, and to model discrete sound speed-data that is a function of depth and
down-range. The technique was tested and validated via computer simulation. It
was shown to have many positive features, but the approach 1s flawed by the set
of generating functions that were selected.

A reflection angle algorithm for arbitrary two-dimensional ocean bottom
models was tested and validated, and was found to be accurate. Computer
simulations of acoustic ray interaction with various two-dimensional ocean bottoms
modeled with the orthogonal function expansion and using the reflection angle

algorithm were also conducted.
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I. INTRODUCTION

In the area of underwater acoustics, the development of an accurate, fast, and
simple computer model to calculate ray paths and sound-pressure levels is an important
first step for modeling and studying sound propagation in the ocean. The RRA (recursive
ray acoustics) algorithm developed by Professor L. Ziomek [Ref.1,2] provides these
features. It requires only discrete input data of the bottom depth and the sound speed for
the ocean being modeled, and uses orthogonal function expansions to fit the data in a
minimum mean-squared error (MMSE) sense using orthogonal polynomials. However,
until now, the concept of orthogonal function expansions had only been implemented and
tested for one-dimensional data in the RRA algorithm, that is, bottom depth as a function
of down-range and the speed of sound as a function of depth.

The intent of this thesis is to show that two-dimensional orthogonal function
expansions can be used to fit discrete data as a function of two independent variables, that
is, bottom depth as a function of cross-range and down-range, and the speed of sound as a
function of depth and down-range. This technique is implemented in the RRA algorithm
to provide more realistic models of the ocean bottom and the speed of sound.

The direction of propagation of a sound ray reflected off the ocean bottom is
calculated based on the unit normal vector to the ocean bottom at the point of incidence.
The unit normal vector is calculated based on the derivatives of the ocean bottom with
respect to down-range and cross-range.

For a one-dimensional model of ocean bottom depth (as a function of down-
range) the angle of reflection is computed only from the derivative of bottom depth with
respect to down-range. The one-dimensional model provides no cross-range information;
the derivative of bottom depth with respect to cross-range is zero. A two-dimensional
model of ocean bottom depth (as a function of cross-range and down-range) would
provide derivatives of the ocean bottom with respect to both cross-range and down-range.
A two-dimensional math model will provide components in the down-range and the

cross-range direction, and the reflected ray will travel down-range and cross-range. By




modeling the ocean bottom with a two-dimensional orthogonal function expansion, an
accurate model of the ocean bottom will be incorporated into the RRA algorithm.

The sound-speed model currently implemented uses only one-dimensional data to
produce a sound-speed vs. depth profile that is used in a zone (a particular area of the
ocean). A two-dimensional orthogonal function expansion results in a model of the
sound-speed as a function of depth and down-range that could be used to fit multiple
sound-speed profiles (SSP) that are taken at different down-range locations.

Chapter II discusses the two-dimensional orthogonal function expansion used to
fit bathymetric data as a function of down-range and cross-range. The generating
function that was chosen, and the algorithm used to orthogonalize the set of generating
functions using the Gram-Schmidt procedure is detailed. Computer simulation results are
shown that demonstrate the accuracy and the applicability of this method. The result is a
smooth surface fit of the ocean bottom obtained from discrete data.

A shortcoming of the generating functions chosen is that cross-range and down-
range values have an equal effect on the estimated value of the ocean bottom depth. In
some cases, ocean bottom depth may have little or no dependence on one of the
parameters. Independent weighting of the parametérs will correct this shortcoming for all
planar ocean bottom cases. This thesis will demonstrate the need to weight parameters
independently in these cases, and show some examples where weighting is applied. For
more complicated ocean bottom geometries, a simple weighting scheme will not correct
the problem created by the choice of generating functions. Alternative choices for the set
of generating functions used in the orthogonal function expansion is discussed in Chapter
V, and is offered as an area for future research.

Chapter III presents the implementation of the ocean bottom models developed in
Chapter II into the RRA Algorithm FORTRAN ray tracing program. The orthogonal
function expansion technique allows accurate calculations of ray reflections off the ocean
bottom. The algorithm used to calculate accurate reflection angles for sound rays will be

presented. Using the unit normal vector to the ocean bottom at the point of incidence, the




direction of propagation of a reflected ray is obtained using vector calculus. Computer
simulation results showing incident and reflected rays propagated with the RRA
algorithm are presented.

Chapter IV discusses the application of the two-dimensional orthogonal function
expansion technique to fit sound-speed data as a function of both depth and down-range.
The procedure is the same to fit both bathymetric and sound-speed data. Computer
simulation results are shown that demonstrate the smooth fit of the discrete data. The
results show that one math model can fit more than one sound-speed profile (SSP) taken
at different down range locations.

Chapter V discusses the problems encountered with the two-dimensional
orthogonal function expansion technique used to model bathymetric and sound-speed

data, states conclusions as well as recommendations for future research.







II. TWO-DIMENSIONAL ORTHOGONAL FUNCTION
EXPANSIONS OF BATHYMETRIC DATA

A. ORTHOGONAL FUNCTION EXPANSION AND THE BASIS FUNCTIONS

Ocean bathymetry data is commonly measured and stored as a set of discrete
measurements of ocean bottom depth at distinct, sampled loéations. Matrices of data
have been generated by the U.S. Navy to chart ocean bottom depth, and provide bottom
contour navigation. This type of data is ideal for developing a model of the ocean bottom
that can be used in the RRA (Recursive Ray Acoustics) algorithm. In ray acoustics, the
model of the ocean bottom is used to calculate ray reflections at the point of incidence to
the ocean bottom. The model of the ocean bottom must provide a smooth fit to the
discrete data, and it must be capable of providing first and second order derivatives of the
ocean bottom at the point of incidence. The orthogonal function expansion technique
provides these features, and it has been demonstrated as an effective method when ocean
bottom depth is a function of one variable, that is, down-range [Ref. 2].

1. Definition of the Two-Dimensional Orthogonal Function Expansion

The two-dimensional orthogonal function expansion used to fit a smooth surface
toa rectangular matrix of ocean bathymetric data as a function of cross-range and down-

range is given by
Ny
95 (x,2) = D b,0, (x,2), @.1)
n=0

where the coefficient

bn . <yb,,, (x{l ;Zy)’¢b" (xg,z’])> s

My, M),

= 3, (x;,2)0; (x,,2,), n=01--,N, ,  (22)

i=1 j=1




represents the inner product of the measured discrete ocean bathymetric data y, (x;,z;),
for i=12,....M, and j=12,..., sz , with the set of orthonormal basis functions
@, (x,2), n=0L,..., N, , evaluated at the discrete cross-range (x,)and down-range(z; )
values corresponding to the discrete ocean bathymetric data. The order of the expansion
is represented by N, . The discrete data must be entered in a matrix, where M, is the

total number of cross-range rows and M, is the total number of down-range columns.

It is important to note that although the data is entered in a matrix, the matrix is, in
general, rectangular, not square, and the data is, in general, unevenly spaced in both the x
and z directions. Figure 1 shows an example of unevenly spaced data entered in a

rectangular matrix. Each data point of the matrix (/) has a cross-range (x;), down-range

(z,),and depth y, (x;,2;) value associated with it.
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Figure 1. Discrete bathymetric data, unevenly spaced, entered in a rectangular matrix.




2. Derivation of the Basis Functions from the Generating Functions

The set of orthonormal basis functions ¢, (x,z), n=0,1,..., N, were determined
by using the Gram-Schmidt procedure [Ref. 3] on the set of generating functions
f,(x,2)=(x+2)", n=0,...,N,. The choice of this particular set of generating
functions will be discussed later. The general equation of the Gram-Schmidt

Orthogonalization Procedure is given by

(f,(x:20,, (x,2))
(@4, (x.2), 0, (%,2))

L (fn(x,Z)’(Pb,,-‘(x,z)) 9, (%2), n=012,.. (2.3)

<¢bn-l (x’z)’ ¢b,,_, (JC,Z))

9, (1,2) = £,(x,2) - 2, (5:2)...

The Gram-Schmidt procedure to find ¢, ,@, ,and @, is shown in Equations (2.4) to

(2.16). The development of the higher order basis functions, for »=34,...,N,, is not

shown since the procedure to expand Equation (2.3) is similar to that demonstrated with
the first three basis functions.
The Oth-order basis function is given by

@, (x,2) = fo(x,2) = (x+2)" =1. (24)
The Ist-order basis function is given by

(£,(x,2),0,, (x.2))
(@1, (x,2),05, (x.2))

@, (x,2) = f1(x,2) - @, (%,2), 2.5)




where the inner products on the right-hand side of Equation (2.5) are given by

My, My,

(1020, (52)) = 2.3 £1(x,52,)05 (5,2,)

i=l j=1

My, M,,

= Zz(xa- +Zy')1 ’

i=1 j=1
My, M,

=22t (2:6)

i=1 j=1
and

My M,,

E,, = <¢’bo (x,2),0,, (x,z)) = 2. 204, (%2003, (x,:2,)

i=1 j=1

My M,

=Y>11=M, M, , Q2.7

i=l j=1

is the energy contained in @, (x,z). Note that the ratio of inner products that appears on

the right-hand side of Equation (2.5) will show up in later equatidns. It needs to be

evaluated during the computation of the /st-order basis function and is saved as

o @0, ) (£, ¢2)

o = = 28)
° <¢b° (x’ Z)! ¢bo (xs Z)> E‘Pbo
Finally, the Ist-order basis function becomes
@y (x,2)=x+z-W, . 2.9




Similarly, the 2nd-order basis function is given by [see Equation (2.3)]

<f2 (x9z)’¢’bo (x’z)>
(24, (5,204, (x,2))

(£,(x:2),0,, (x,2))
(@, (x,2),0,, (x,2))

@, (x,2)

¢bz (x,z) = fz (x,z) -

@, (x,2) , (2.10)

where the inner products in the numerators on the right-hand side of Equation (2.10) are

given by

M;, My,

<f2 (x,z),(obo (xaz)> = Z Zfz (x;,2; )¢;0 (x452y) 5

i=1 j=1

Max be

=2 D (x,+2,)", (2.11)

i=1 j=1

and

My, M,

(f2 (Jc,z),fq),,l (x,z)) =23 fi(x,.2)0; (x;,2,) 5

i=1 j=1

My, M, My, My,

=33 (x, 42, W D D (5, +2,) . (2.12)

i=1 j=1 i=l j=1

The energy contained ing, (x,z)is given by Equation (2.7) and the energy contained




in ¢, (x,z) is given by

My, My,

E,, = <¢’b1 (x,2),0,, (x’z)> = 2. 2.0 (x;:2,)05, (x,:2,) »

i=1 j=1

My M),

= ZZI% (xij’zij)lz . (213)

i=l j=1

Equation (2.13) is evaluated by using Equation (2.9) for the Ist-order basis function,
@, (x,2). The ratios of inner products that appear on the right-hand side of Equation

(2.10) are saved for use in later equations as

(Ax2.0,(x2)  (f(x2).0,(x2)

" o0 ®2)  E, ’ 19
and
(f,(2,0,(5,2))  (£,(x.2),0, (x,2))
2 = <¢’b1 (2.0 (x,z)) = E, (2.15)
Finally, the 2nd-order basis function is given by
?s, (x,2) = (x +2)* =W,y —Wy[x+z-W,] . (2.16)

As mentioned earlier, the equations for the higher-order basis functions, for
n=34,..,N,, are found by expanding Equation (2.3) in the same manner. It is
important to note from Equations (2.4) to (2.16) that all the input needed to determine the
basis functions comes from the discrete data pbints of the ocean bathymetry. This

10




techhique is ideally suited for implementation by a computer program. Additionally, the
order of the orthogonal function expansion, N, , can be increased by simply computing

the next higher order coefficient 5, and orthonormal basis function ¢, ; all previous

coefficients and basis functions do not have to be recomputed. In fact, many of the
computations needed for the lower order coefficients and basis functions can be saved
and used in the computation of the higher order coefficients and basis functions. The

choice of N, will be discussed in the next section concerning the minimum mean-

squared error (MMSE) criterion for the best fit of the data.

Finally, the data for this technique do not have to be evenly spaced. The ability to
use unevenly spaced data allows for data sets with slight perturbations in the down-range
or cross-range values. Real data will contain randomness. For example, set and drift of a

‘ship collecting bathymetric data could introduce such perturbations in down-range and
cross-range of measured data, but there would be no effect on the estimated value of
ocean depth.

3. The Generating Functions and the Minimum Mean-Squared Error
Criterion
Theoretically, any finite set of functions may be transformed into a set of

orthonormal basis functions by using the Gram-Schmidt procedure, and a MMSE fit to a
finite set of data can be obtained using Equation (2.1) [Ref. 3]. Basis functions that are
based on sinusoidal functions are frequently used in signal processing to model natural
occurring phenomena with a finite Fourier series expansion. A previous effort to model
the ocean bottom using a finite Spatial Fourier Series (SFS) expansion was attempted in
1991 [Ref. 4]. The SFS technique encountered difficulty due to the oscillations that are
inherent in using a finite set of sinusoids to fit the ocean bottom. Additionally, the
estimation of the first and second order derivatives at the point of incidence of a ray
reflecting off the ocean bottom proved to be inaccurate due to the oscillatory fit. The use

of a set of generating functions with increasing powers of the independent variable,

11




f,(z)=z", n=01..,N,, was used successfully for one-dimensional orthogonal

function expansions of ocean bathymetric data [Ref. 2].

The choice of using increasing powers of the sum of the cross-range and down-
range variables as the set of generating functions was used in this thesis research, that is,
f,(x;2)=(x+2)", n=0]1,...,N,. The lower order functions, for n =0, 1, and 2, fit the
most common trends in the ocean bathymetry without introducing oscillations. For
n = 0, the orthogonal function expansion fits a constant depth ocean bottom. For n=1,
the orthogonal function expansion fits an up-sloping or down-sloping ocean bottom in
both the x and z directions. For n =2, the orthogonal function expansion fits a slope
with increased curvature. The higher orders tend to fit ocean bottoms with many and
various contour changes. In computer simulation, the highest order fit used is the
designer’s choice. Section B of Chapter II will present results with the highest order fit
being 7th-order, that is, N, =7. The choice of the highest order fit is a trade-off
between exactly fitting data (interpolation) versus providing a smooth fit to the trend of
the data. Higher order, or a higher value of N, , will fit contour changes more exactly.
That is, the estimated fit will more closely match the input data. A lower order fits the
discrete data by smoothing through contour changes in the bathymetric data that could be
due to a rough bottom or measurement error. Data is corrupted by measurement noise
and by a lack of precision in the measurement equipment. Limiting the highest order to
N, =7 provides a smooth fit when the number of data points is greater than eight points.

If the discrete data is fit as accurately with N, <7 as with N, =7, then the use
of the higher order terms is unnecessary. Lower order fits are used based on a minimum
mean-squared error criterion [Ref. 2,3]. The order of the fit is determined by computing

the mean-squared error ( MSE ) for each order fit, N, =0,1,...,7, as follows:

MSE, =E, -E, , (2.17)

Yy Vo

12




where

M,, sz

Ey‘,m = <yb,,, (xlj ’zij )ayb,, (xij ,Z,-j > = ZZlyb,, (xy' ’Zg')|2 (218)

i=l j=1

is the energy contained in the measured bathymetric data, and

My, M,

E;, =(9,(5;52,):95 (x52,)) = 2, 2195 (5,02, (2.19)

i=1 j=1

is the energy contained in the bathymetric estimate. The value of N, that produces the

lowest MSE becomes the order of expansion used to reconstruct the bathymetric data.
B. COMPUTER SIMULATION RESULTS OF BATHYMETRIC FITS

The technique of orthogonal function expansion to model ocean bathymetry that
was derived in Section A of Chapter II was implemented in the RRA Algorithm
FORTRAN fay tracing program. The results of various test cases are presented
graphically to demonstrate both the successes and the shortcomings of this method of
ocean bathymetry modeling. The graphs, presented in Figures 2 to 23, show the discrete
bathymetric data points as large black dots (e). The éstimated fit to the discrete data
computed by the orthogonal function expansion is presented as a mesh of lines to
represent the two-dimensional, continuous surface. As can be seen from these figures,
the surfaces, in general, do not pass through all of the data points. Instead, the curves fit
the trend of the data. Computer simulation of this technique did reveal shortcomings.
The test cases presented will show examples of the problems encountered, discuss the
reasons for the problems, and suggest areas of future research to explore methods to

correct these shortcomings.

13




Each plot contains a legend with the following information:
(1) ‘CASE:’, adescription of the test case
(2) ‘SIGMAYB?’, the value of the standard deviation, (o, ), of a randomly

generated zero-mean gaussian noise added to each data point

(3) the order of the fit, (N, ), based on the minimum mean-squared error

criterion
(4) ‘MSEO:’ to ‘MSE7:’, the mean-squared error for N, =0,1,2,...,7, computed
using Equation (2.17)

The test cases are grouped in two categories. Oth-order and Ist-order fits are
presented to show that exact fits are obtained in simple cases. The ability to handle
unevenly spaced data is presented. Also, a problem with the choice of the generating
function is discussed. Then, ocean bottoms with a more complicated or arbitrary shape
are presented to demonstrate fitting the trend of the data. The shortcomings of the
generating function that was chosen is discussed further.

1. Exact Fit Test Cases

Figures 2 and 3 demonstrate the fit of the most basic test case, a flat ocean bottom
with a constant depth. The exact equation used to generate the 8x10 rectangular
matrices of data for Figures 2 and 3 is given by

v, (x,2) =1300. (2.20)

Figure 2 shows the discrete data points entered at evenly spaced cross-range and
down-range locations. Figure 3 shows that the data may be entered at unevenly spaced
coordinates without affecting the fit. In both cases the fit is an exact Oth-order fit with the

orthogonal function expansion returning a value of 1300 meters for any combination of

cross range and down range. The Oth-order mean-squared error, MSEQ, is 9.09 x 107

and not exactly equal to zero due to round-off error in the computer simulation which

14




OCEAN BOTTGOM BATHYMETRY
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Figure 2. Flat ocean bottom with evenly spaced data.
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OCEAN BOTTGOM BATHYMETRY

8X10 FLAT BOTTOM IN X AND Z, UNEVENLY SPACED DATA
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Figure 3. Flat ocean bottom with unevenly spaced data.
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uses double precision numbers. The values of the higher order mean-squared errors,
MSET1 to MSE7, are equal to MSEQ. This shows that no additional accuracy is obtained
for N, > 0.

Figures 4, 5, and 6 demonstrate exact /st-order fits. The exact equation used to

generate the 7 x 8 rectangular matrices of data for Figures 4 and 5 is given by
(x z)—1500—-1-—(x+z) (2.21)
Vol 160 ’ ‘

which represents a planar ocean bottom that slopes upward at the same rate with respect
to cross-range and down-range. The exact equation used to generate the 8x8

rectangular matrix of data for Figure 6 is given by
Yy (x,2) = 1350+-31—0(x+z), (2.22)

which represents a planar ocean bottom that slopes downward at the same rate with
respect to cross-range and down-range. In Figures 4 and 6, the orthogonal function

expansion fits the data with an exact first order fit. For N, =1, the orthogonal function

expansion is given by
P5(x,2) = by +b,(x +2~W,,) = (by — b,W,5) + b (x +2), (2.23)

which exactly matches the form of Equations (2.21) and (2.22). Note that the choice of
generating functions used for this technique, f,(x,z)=(x+2)", for n=0,1,...,7, will
result in an orthogonal function expansion based upon the sum of x and z. Since x and z

are multiplied by the constant b,, the same slope with respect to cross range and down

range will result.
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OCEAN BOTTOM BATHYMETRY

0.07

.57

48 1))

CASE: 7X8 UP-SLOPE IN BOTH X AND Z DIRECTIONS

SIGMAYB: 0.0M  1ST-ORDER MMSE SURFACE FIT

MSEQ: 1.295x10° MSE2: 2.645%107 MSE4: 2.645%107 MSE6: 2.645x107
MSEl: 2.645x107 MSE3: 2.645%107 MSES: 2.645%107 MSE7: 2.645%107

Figure 4. Planar ocean bottom sloping upward in both the
x and z directions with evenly spaced data.
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OCEAN BOTTOM BATHYMETRY

0.0“

2£0.07

CASE: 7X8 UP-SLOPE IN BOTH X AND Z, UNEVENLY SPACED DATA

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEO: 1.237x10° MSE2: 4.415%107° MSE4: 4.334x10" MSE6: 4,294%107
MSEl: 4.805x107 MSE3: 4.341x107 MSES: 4.303%107 MSE7: 4,238%10"

Figure 5. Planar ocean bottom sloping upward in both the
x and z directions with unevenly spaced data.
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Figure 6. Planar ocean bottom sloping downward in both the
x and z directions with evenly spaced data.

20

AYLIWAHIBYE WOLLOY NUJ30




Figure 5 demonstrates that the data may be unevenly spaced. Note that the fit
indicated in Figure 5 is 7th-order and not /st-order. Equation (2.21) was used to generate
the discrete data entered for the computer simulation shown in Figure 5, however, only
five significant digits were entered. Round-off error results from having only five
significant digits in the discrete bathymetric data. For the orthogonal function expansion,
the double-precision computations that evaluate the best fit of the data based on the
mean-squared error criterion found that the 7¢h-order fit was slightly more accurate. The
Ist-order mean-squared error is of the same order of magnitude as the 7th-order mean-

squared error. The orthogonal function expansion coefficients,

b, = 882963 x10° , b, = -111226 x 10°,
b, = -624349x107% | b, = -2.73240x 107 ,
b, =838137x107, by = -1.74958 x 107 ,
by =-930174x107 , b, =2.38320x 107,

show that the fit is essentially /sz-order. The Oth- and Ist-order coefficients, b, and b,,

are five orders of magnitude larger than the higher order coefficients, b,,b;,...,b,. In this
test case, the higher order terms of the orthogonal function expansion will affect only the
fourth or fifth significant digit of the ocean bathymetry evaluated using the orthogonal
function expansion.

Figures 7, 8, and 9 show the results of fitting discrete bathymetric data that shoals,
or has an upward slope, in only the down-range (z) direction. The data is constant with
respect to variations in the cross-range (x) direction. The exact equation used to generate

the discrete data for Figures V7, 8,and 9 is given by

y,(%,2) = 550——;-2. (2.24)
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Figure 7 shows the results of the orthogonal function expansion as detailed in
Section A of Chapter II. The fit that is presented in Figure 7 is the best fit to the data
when using the generating function given in Section A of Chapter II. The corner of the
surface fit at the maximum cross-range and minimum down-range location (x = 1.250km,
z=0.0km) is above the discrete bathymetric data points; the corner of the surface fit at
the minimum cross-range and maximum down-range location (x = 0.0km, z = 1.050km)
is below the discrete bathymetric data points. The fitted surface approximates a /st-order
planar ocean bottom model that slopes upward equally in both the x and z directions.
Therefore, the fitted plane is above half of the discrete bathymetric data points in the
lower half of Figure 7, and it is below half of the discrete bathymetric data points in the
upper half of Figure 7. The best fit is limited in its accuracy due to the fact that x and z
are summed in every term of the orthogonal function expansion. The orthogonal function
expansion does not treat the x and z dependence separately, and this is the major
shortcoming of this technique.

In order to correct this shortcoming, an independent weighting with respect to x
and an independent weighting with respect to z need to be added to the orthogonal
function expansion. With the addition of weighting factors to Equation (2.1), the

orthogonal function expansion becomes

Ny
Py (x,2) =Y b,o, W.x,W.2), (2.25)

n=0

where W, and W, are weighting factors to introduce independence in x and in z. For the
exact Ist-order cases presented in Figures 7 through 15, the weighting factors are
constants in order to independently match the rate of change of the ocean bottom depth
with respect to x and to z. In the following section, for more complicated ocean bottom

geometries, the weighting factors would need to be functions of the independent
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CCEAN BOTTOM BATHYMETRY

0.0

150.0'

W)

CASE: 6X8 UP-SLOPE IN Z DIRECTION ONLY, NO WEIGHTING

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEOQ: 1.575x10° MSE2: 8.557x10' MSE4: 9.452%10° MSE6: 9.419x10*
MSE1: 9.557x10' MSE3: 9.452x10" MSES: 9.418x%10* MSE7: 9.384x10°

Figure 7. Planar ocean bottom sloping upward in the z direction only with no variation
in the x direction, modeled without weighting x and z separately, with evenly spaced data.
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variables. The development of an algorithm to determine the weighting factors, #, and
W,, from the discrete data is not presented as part of this thesis and is left as an area of
future research. The choices of W, and W, in Figures 7 through 15 are based on a priori
knowledge of the signs (positive or negative) of the slopes of the data with respect to
cross-range (x) and down-range (z). |

Figure 8 presents the same test case presented in Figure 7, except that weighting
factors, W, and W,, were added as shown in Equation (2.25) with #, =0 and W =1.
The result is an exact /st-order fit. Figure 9 presents the same test case with the discrete
bathymetric data entered at unevenly spaced locations. As discussed concerning Figure 5,
the fit determined by the orthogonal function expansion is 7zh-order due to using only
five significant digits for the discrete bathymetric data. The overall fit is /st-order; the
higher order terms of the orthogonal function expansion only affect the lower significant
digits of the estimated value of the ocean bottom.

Figures 10 and 11 show the fit to discrete bathymetric data that has a downward
slope in only the down-range (z) direction. The data is constant with respect to variations
in the cross-range (x) direction. The exact equation used to generate the discrete data for

Figures 10 and 11 is given by

¥, (x,2) =1700 + -2—1(-)—2. (2.26)

Figure 10 shows the result of the orthogonal function expansion as detailed in Section A
of Chapter II. Figure 11 presents the same test case presented in Figure 10, except that
weighting factors, #, and W,, were added as .shown in Equation (2.25) with #, =0 and
W =1.

Figures 12 and 13 show the results of fitting discrete bathymetric data that has
opposite slopes with respect to cross-range and down-range, that is, an upward slope in

the down-range (z) direction and a downward slope in the cross-range (x) direction. The
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OCEAN BOTTOM BATHYMETRY

0.0

150.07

XMy

CASE: 6X8 UP-SLOPE IN Z DIRECTION ONLY, WITH WEIGHTING

SIGMAYB: 0.0M  1ST-ORDER MMSE SURFACE FIT

MSEO: 1.575%10° MSE2: 1.094x10° MSE4: 1.094%10° MSE6: 1.084x10°
MSEl: 1.094x10° MSE3: 1.094x10° MSES: 1.094»%10° MSE7: 1.094x10”

Figure 8. Planar ocean bottom sloping upward in the z direction only with no variation
in the x direction, using #, = 0 and W, =1, with evenly spaced data.
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150.0°

iy

CASE: BX8 UP-SLOPE IN Z ONLY, WITH UNEVENLY SPACED DATA

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEO: 1.523x10° MSE2: 3.621%107 MSE4: 3.522%107 MSE6: 2.803%107
MSE1: 3.740%107 MSE3: 3.523x102 MSES: 3.149%107° MSE7: 2.803x10™

Figure 9. Planar ocean bottom sloping upward in the z direction only with no variation
in the x direction, using W, =0 and W, =1, with unevenly spaced data.
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OCEAN _BOTTOM BATHYMETRY

CASE: 8X8 DOWN-SLOPE IN Z DIRECTION ONLY, NO WEIGHTING
MSEQ: 7.560%10° MSE2: 3.780%10° MSE4: 2. 780%10° MSEG: 3.780%10°
MSE1: 3.780%10° MSE3: 3.780%10° MSES: 3.780x10° MSE7: 3.780%10

SIGMAYB: 0.0M  1ST-ORDER MMSE SURFACE FIT

Figure 10. Planar ocean bottom sloping downward in the z direction only with no

variation in the x direction, modeled without weighting x and z separately, with evenly

spaced data.
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Figure 11. Planar ocean bottom sloping downward in the z direction only with no
variation in the x direction, using W, = 0 and W, =1, with evenly spaced data.
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slopes are equal in magnitude, but opposite in sign. The exact equation used to generate

Figure 12 shows the result of using the orthogonal function expansion as detailed in
Section A of Chapter II. Figure 13 presents the same test case presented in Figure 12,
except that weighting factors, #, and W,, were added as shown in Equation (2.25) with
W.=-land W, =1.

Figures 14 and 15 show the results of ﬁtfing a rectangular matrix of
discrete bathymetric data that has opposite slopes with respect to cross-range and down-
range, that is, a downward slope in the down-range (z) direction and an upward slope in
the cross-range (x) direction. The slopes are equal in magnitude, but opposite in sign.
The exact equation used to generate the discrete bathymetric data for Figures 14 and 15 is
given by

1
y,(x,2) = 1300—%(x ~2). (2.28)

Figure 14 shows the result of using the orthogonal function expansion as detailed in
Section A of Chapter II. Figure 15 presents the same test case presented in Figure 14,
except that weighting factors, W, and W,, were added as shown in Equation (2.25) with
W.=-land W, =1.

Figures 2 through 15 have shown that the method of orthogonal function
expansion accurately models discrete bathymetric data in the most basic test cases of
planar ocean bottoms. From discrete bathymetric data, a continuous model is produced.

The discrete bathymetric data does not need to be evenly spaced. Errors in the discrete
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OCEAN BOTTOM BATHYMETRY

0.0"

#25°

X

CASE: 7X8 DOWN-SLOPE IN X, UP-SLOPE IN Z, NO WEIGHTING

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 1.295%10° MSE2: 1.271%10° MSE4: 1.267%10° MSES: 1.265x10"
MSEl: 1.271%10° MSE3: 1.267x10° MSES: 1.265x10° MSE7: 1.263x10°

Figure 12. Planar ocean bottom sloping upward in the z direction and downward in the
x direction, modeled without weighting x and z separately, with evenly spaced data.
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OCEAN BOTTOM BATHYMETRY

CASE: 7X8 DOWN-SLOPE IN X, UP-SLOPE IN Z, WITH WEIGHTING
SIGMAYB: 0.0M  1ST-ORDER MMSE SURFACE FIT

MSEQ: 1.205%10° MSE2: 3.353x107 MSE4: 3.353x107 MSE6: 3.353x107
MSELl: 3.353x107 MSE3: 3.353x107 MSES: 3.353x107 MSE7: 3.353%107

Figure 13. Planar ocean bottom sloping upward in the z direction and downward in the
x direction, using W, = -1 and W, =1, with evenly spaced data.
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OCEAN BOTTOM BATHYMETRY

CASE: 5X6 DOWN-SLOPE IN Z, UP-SLOPE IN X, NO WEIGHTING

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEC: 1.092%10° MSE2: 1.082%10° MSE4: 1.078x10° MSE6: 1.077x%10°
MSE1: 1.082%10° MSE3: 1.078x10° MSES: 1.077%10° MSE7: 1.075%10°

direction and upward in the
with evenly spaced data.

Figure 14. Planar ocean bottom sloping downward in the z

x direction, modeled without weighting x and z separately,
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Figure 15. Planar ocean bottom sloping do
x direction, using W,
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bathymetric data, such as round-off error, do not affect the dominant results of a /st-order
fit. The only major shortcoming is the need of an algorithm to weight x and z
independently.

2. Complicated Test Cases

Figures 16(a), 16(b), and 17 show test cases that were presented in the previous
section, except that now the discrete ocean bathymetric data has been corrupted by a zero-

mean random gaussian noise with standard deviation, o, that has been added to each
point. Note that the plots refer to the value of o, as ‘SIGMAYB:’ in the legend of the

plot. Only the value of the depth of each point has been corrupted. The cross-range and
down-range values have been left at evenly spaced coordinates so that the (x,z) coordinate
of each discrete data point corresponds to the intersection of the lines in the mesh of the

estimated ocean bottom.
Figures 16(a) and 16(b) show the flat ocean bottom that was presented in Figure

2. Equation (2.20) has been modified as follows:

y,(x,2)=1300+ 0, N(0,]), (2.29)

where N(0,1) represents a zero-mean gaussian (normal) random variable with a unit

standard deviation obtained from a gaussian random number generator. For Figure 16(a),

o, is 13 meters, a standard deviation that is 1% of the value of the uncorrupted ocean

bottom data. For Figure 16(b), o, is 130 meters, a standard deviation that is 10% of the
value of the uncorrupted ocean bottom data. In both cases, the overall trend of the
discrete bathymetric data is fit by the orthogonal function expansion. Note in Figures
16(a) and 16(b) that the 7th-order mean-squared error and the Oth-order mean-squared
error are of the same order of magnitude. Although a 7th-order fit is produced, the Oth-

order, flat ocean bottom, predominates.
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0.0

w3

5@.0‘

X md

CASE: 8X10 FLAT BOTTOM WITH 1% DEVIATION IN DEPTHS

SIGMAYB: 13.0M 7TH-ORDER MMSE SURFACE FIT

MSEO: 1.128%10' MSE2: 1.068%10' MSE4: 1.028x10% MSES: 1.025%10"
MSE1: 1.100%10° MSE3: 1.068x10' MSES: 1.028%10" MSE7: 1.009%10"

'Figure 16(a). Flat ocean bottom with evenly spaced data corrupted by a zero-mean
random gaussian noise added to the depth of each data point.

35




OCEAN BOTTOM BATHYMETRY

9.07

23]

Ny

CASE: 8X10 FLAT BOTTOM WITH 107 DEVIATION IN DEPTHS

SIGMAYB: 130.0M 7TH-ORDER MMSE SURFACE FIT

MSEQ: 1.128%10° MSE2: 1.068x10° MSE4: 1.028%10° MSES: 1.025%10°
MSE1: 1.100%10° MSE3: 1.068x10° MSES: 1.028x%10° MSE7: 1.009x%10°

Figure 16(b). Flat ocean bottom with evenly spaced data corrupted by a zero-mean
random gaussian noise added to the depth of each data point.
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Figure 17 shows the shoaling ocean bottom presented in Figure 8 with Equation

(2.24) modified to
Y, (x,2) = 1350——;-z+ o, N©O), (2.30)

where o, =20 meters. Again, the orthogonal function expansion fits the trend of the

discrete bathymetric data. The values of the mean-squared errors in the legend of Figure
17 indicate that a Ist-order fit dominates, demonstrating that the orthogonal function
expansion smoothes through noise in the discrete bathymetric data.

More complicated ocean bottom geometries are presented in Figures 18 through
23. The models presented in each case continue to fit the trend of the discrete
bathymetric data and provide a smooth, continuous model of the ocean bathymetry from
discrete data. However, the poor performance illustrated in Figure 23 demonstrates
serious shortcomings with the two-dimensional orthogonal function expansion based on
the current choice of generating functions.

Figure 18 shows a shoaling ocean bottom with a non-constant slope that increases
as x and z increase. The exact equation used to generate the 5x 6 rectangular matrix of

discrete data for this test case is given by
y,(x,2) = 2000 - 3(x + 2)°. (2.31)

Equation (2.31) is of the same form as the orthogonal function expansion with N, =2.
The mean-squared errors shown in the legend of Figure 18 show that the resulting fit is
predominantly a 2nd-order fit. The small value of the 2nd-order mean-squared error
shows close agreement between the discrete bathymetric data and the 2nd-order estimated
fit. Again, the algorithm computes higher order terms, but these terms have little effect

on the overall fit.

37
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0.0'1

35257

AN 1)

CASE: 6X8 UP-SLOPE IN Z DIRECTION ONLY, WITH WEIGHTING

SIGMAYB: 20.0M 7TH-ORDER MMSE SURFACE FIT

MSEQ: 5.955x10° MSE2: 1.629x10° MSE4: 1.445%10° MSES: 1.344x10°
MSEl: 1.683x10° MSE3: 1.476x10' MSES: 1.440%10" MSE7: 1.331%10°

Figure 17. Planar ocean bottom sloping upward in the z direction only with no variation
in the x direction, using #, = 0 and W, =1, with evenly spaced data corrupted by a zero-

mean random gaussian noise added to the depth of each data point.
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CASE: SX6 QUADRATIC UPWARD SLOPING OCEAN BOTTOM

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 1.022x10° MSE2: 1.803x107 MSE4: 1.789x107 MSE6: 1.754%107
MSEl: 7.730%10° MSE3: 1.789x107 MSES: 1.754%107 MSE7: 1.720x10°

Figure 18. Shoaling ocean bottom in both the x and z directions
with evenly spaced data.
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Figures 19 and 20 show a rolling or oscillating ocean bottom. The exact equation

used to generate the data for Figure 19 is given by
y,(x,2) = 1500 - 180(x +z) + 30(x + z)* = 13(x +2)°, (2.32)

and

v, (x,2) = 1500 — 180(x +2) + 30(x + 2)> = 13(x +2)* + &, N(0,]), (2.33)
b b4

is used to generate the data for Figure 20. In Equation (2.33), a standard deviation of

o,, =40 meters is used to add zero-mean random gaussian noise for the test case shown

in Figure 20. Equations (2.32) and (2.33) are of the same form as the orthogonal function
expansion with N, = 3. The mean-squared errors shown in the legend of Figures 19 and
20 show that the resulting fits are predominantly 3rd-order. The small value of the 3rd-
order mean-squared error shows close agreement between the bathymetric data and the

3rd-order estimated fit. Figure 20 demonstrates the ability of the orthogonal function

expansion to fit the trend of discrete bathymetric data in the presence of noise, even for

complex ocean bottom geometries.

Figures 21(a) and 21(b) present results from the same test case, but shown
graphically from two different points of view. The test case presented shows a flat ocean
bottom with a gaussian shaped mound centered at the origin. The exact equation used to

generate the 8 x 10 rectangular matrix of data is given by

x? 2

Vp(x,2) =¢, —c, ! e e 27 (2.34)

V2zo
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D.DW

Xy

CASE: SX6 OSCILLATING OCEAN BOTTOM

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 2.871x10° MSE2: 2.655%10° MSE4: 1.104x107 MSE6: 1.062x10
MSEl: 2.659%10° MSE3: 1.169x107 MSES: 1.076%107 MSE7: 1.061x107

Figure 19. Rolling or oscillating ocean bottom with evenly spaced data.
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0.0‘]
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CASE: 5X6 OSCILLATING OCEAN BOTTOM

SIGMAYB: 40.0M 7TH-ORDER MMSE SURFACE FIT

MSEQ: 2.880x10° MSE2: 2.683x10° MSE4: 4.883%10° MSE6: 4.649x10"
MSEl: 2.683x10° MSE3: 4.889x10' MSES: 4.748x10° MSE7: 3.831%10"

Figure 20. Rolling or oscillating ocean bottom with evenly spaced data corrupted by a
zero-mean random gaussian noise added to the depth of each data point.
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With the constants set to ¢, = 1300, ¢, =10°, and o = 4, Equation (2.34) becomes

X2 +22

y,(x,2) =1300-994.72¢ 2, (2.35)

Equation (2.35) is modified by adding a zero-mean random gaussian noise with o, =50

meters, for the test case presented in Figures 22(a) and 22(b).
Figures 21(a) and 21(b) present a test case that does not match the form of

Equation (2.1) for the orthogonal function expansion. Although the orthogonal function |

expansion does not exactly fit the data, the model fits the trend of the data. The gaussian
function given in Equation (2.34) is centered at the origin. Therefore, the orthogonal
function expansion, which is derived from the generating functions, f,(x,z)=(x+2)",
for n=0,,...,7, can follow the data as it rolls away from the origin. In Figures 22(a) and
22(b), the addition of randomness to the data creates a more realistic test case of a
downward sloping, complex ocean bottom. The model smoothly fits through the discrete
bathymetric data with some data points above and some data below the fit.

Figurés 23(a) and 23(b) demonstrate the major shortcoming of the algorithm
~ being tested. This test case presents a gaussian shaped ocean bottom with the peak of the
gaussian function centered within the rectangular matrix of data at x =5km, z=5km.
The exact equation used to generate the 8 x 10 rectangular matrix of discrete bathymetric
data is given by

(-9 _(z-5)?
e e 2, (2.36)

Yp(x,2)=¢ ¢, \/57?0'
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0.07

CASE: 8X10 FLAT BOTTOM WITH A GAUSSIAN MOUND

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 5.440%10° MSE2: 3.245x10° MSE4: 2.428%10° MSE6: 2.131x10°
MSEl: 1.658x10° MSE3: 2.819x10° MSES: 2.147%10° MSE7: 2.128x10°

Figure 21(a). Downward sloping ocean bottom with a gaussian shape in both
the x and z directions with evenly spaced data.




OCEAN BOTTOM BATHYMETRY

MSEO: 5.440%10° MSE2: 3.245%10° MSE4: 2.428%10° MSE6: 2.131%10°
MSE1l: 1.658%10° MSE3: 2.819%10° MSES: 2.147%10° MSE7: 2.128%10

CASE: 8X10 FLAT BOTTOM WITH A GAUSSIAN MOUND
S1GMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

~ Figure 21(b). Downward sloping ocean bottom with a gaussian shape in both
' the x and z directions with evenly spaced data.

45




OCEAN BOTTOM BATHYMETRY

0.0

X

CASE: 8X10 FLAT BOTTOM WITH A GAUSSIAN MOUND

SIGMAYB: 50.0M 7TH-ORDER MMSE SURFACE FIT

MSEQ: 5.640%10° MSE2: 4.226%10° MSE4: 3.660%10° MSE6: 3.395%10°
MSEl: 1.602x10° MSE3: 3.806x10° MSES: 3.399x10° MSE7: 3.353x10°

Figure 22(a). Downward sloping ocean bottom with a gaussian shape in both the x and z
directions with evenly spaced data corrupted by a zero-mean random gaussian noise
added to the depth of each data point.
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MSEQ: 5.640%10° MSE2: 4.226x10° MSE4: 3.660%10° MSE6: 3.395x10
MSEl: 1.602%10° MSE3: 3.806x10° MSES: 3.399%10° MSE7: 3.353%10°

CASE: 8X10 FLAT BOTTOM WITH A GAUSSIAN MOUND
SIGMAYB: 50.0M 7TH-ORDER MMSE SURFACE FIT

Figure 22(b). Downward sloping ocean bottom with a gaussian shape in both the x and
z directions with evenly spaced data corrupted by a zero-mean random gaussian noise
added to the depth of each data point.
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0.0
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CASE: 8X10 GAUSSIAN SHAPED OCEAN BOTTOM

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 5.350%10° MSE2: 3.442x10° MSE4: 3.254x10° MSE6: 3.243x10°
MSEl: 4.359%10° MSE3: 3.255x10° MSES: 3.251x10° MSE7: 3.243%10°

Figure 23(a). Gaussian shaped ocean bottom with the peak of the gaussian
' function at x = 5km, z = Skm with evenly spaced data.
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MSEO: 5.350%10° MSE2: 3.442%10° MSE4: 3.254x10° MSE6: 3.243x10°

MSE1l: 4.359%10° MSE3: 3.255%10° MSES: 3.251%10° MSE7: 3.243x%10°

SIGMAYB: 0.0M  7TH-ORDER MMSE SURFACE FIT

CASE: 8X10 GAUSSIAN SHRPED OCEAN BOTTOM

Figure 23(b). Gaussian shaped ocean bottom with the peak of the gaussian
function at x = 5km, z = Skm with evenly spaced data.
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With the constants set to ¢, =1300, ¢, = 10°, and o = 4, Equation (2.36) becomesv

_[(x=5)+(z-5)°]

y,(x,z) =1300-99472¢ 2 . (2.37)

The fit produced by the orthogonal function expansion in Figures 23(a) and 23(b)
smoothes through the peak of the gaussian shape and provides a poor fit to the discrete
data. This shortcoming may be due to two reasons. First, if the orthogonal function

expansion was computed to a higher order using N, > 7, then the surface fit would more

closely match the curvature of the gaussian shape of the discrete data. The maximum

value of N, is a designer’s choice. The chosen value is a trade-off between exactly

fitting rough or rapidly varying ocean bottoms versus smoothing through some of the
roughness or rapid changes. A higher value of N, may be more appropriate if this
technique is used to model rough or rapidly varying ocean bottoms. Second, the set of
generating functions used to derive the equations for the two-dimensional orthogonal
function expansion was selected due to the success of the set of generating functions used
in the one-dimensional orthogonal function expansion presented in [Ref. 2]. The set of
generating functions used in this thesis research may not have been the best choice.

As can be seen in Figures 16 through 23, the surface fits have a constant value for

the estimated ocean bottom depth across lines of contour given by

x+z=C, (2.3%)

where C is a positive constant. The set of generating functions, f,(x,z)=(x+2)", for
n=10,,...,7, result in the same estimated depth being computed for values of x and z that
satisfy Equation (2.38). Therefore, the surface fits have no curvature along these
contours. This effect can be seen in both Figures 21(a) and 23(a). The estimated surface

fits fail to roll off in two corners, the corner given by the maximum cross-range and
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minimum down-range location, and the corner given by the minimum cross-range and

maximum down-range location. This shortcoming is not as noticeable in Figure 21(a)
since the discrete data has much less curvature across these contours. In Figure 23(a),
this shortcoming results in an unacceptable fit of the discrete bathymetric data.
Correcting this shortcoming is offered as an area of future research and possible
alternatives will be discussed in Chapter V.

3. Summary

The method of orthogonal function expansion to fit two-dimensional, discrete
ocean bathymetric data performs well, but more research is needed to fit all arbitrarily
shaped ocean bottom geometries. The orthogonal function expansion has many positive
features. It needs only discrete bathymetric data that may be unevenly spaced. It is
unaffected by noise in the discrete bathymetric data, and it smoothes through noisy or
rapidly varying data to provide a smooth, continuous model of the ocean bottom. Chapter
I1I will further demonstrate the utility of this method of ocean bottom modeling by using
this technique in the RRA Algorithm to produce accurate three-dimensional ray traces

with rays reflecting off of arbitrarily shaped two-dimensional ocean bottoms.
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III. THE BATHYMETRIC MODEL APPLIED TO
RAY TRACING IN THE RRA ALGORITHM

A. REFLECTION ANGLES OFF THE TWO-DIMENSIONAL OCEAN BOTTOM
MODEL '

In a ray acoustics ray tracing program, an important feature of a model of the
ocean bathymetry is that it facilitates accurate ray reflection calculations. The ocean
bottom model must provide accurate first order derivatives in order to calculate the
propagation vector of a sound ray reflecting off the ocean bottom. Additionally, in order
for the ray tracing program to allow for three-dimensional ray propagation, a two-
dimensional ocean bottom model is needed which can be used to calculate, or accurately
estimate, first order partial derivatives of the ocean bottom depth with respect to both
cross-range and down-range at the point of incidence of a propagating ray. Given these
partial derivatives, the reflected ray can be calculated using vector analysis.

The partial derivatives of the ocean bottom depth with respect to cross-range and
down-range can be accurately estimated with a central differencing algorithm that was
originally presented in [Ref. 7], and was tested for accuracy in estimating reflection
angles off one-dimensional ocean bottom models in [Ref. 4]. The reflection angles
calculated in [Ref. 4] were found to be accurate, and had an average percentage error of
less than 0.1%. The equation for estimating the partial derivative of the ocean bottom

depth with respect to down-range is given by

_(x,2) =y, (x,2+2h)+8y,(x,z+h) -8y, (x,z-h) %y,, (x,z-2h)
& | 12h

S , 3.1

and the equation for estimating the partial derivative of the ocean bottom depth with
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respect to cross-range is given by

f = &, (x,2) _ ~y, (x +2h,2)+8y,(x +h,z) =8y, (x —h,z) + y, (x - 2h,z)
¥ & 12A

, (32)
where % is some arbitrarily small number, with value nominally between 0.01 and 1. For
the computer simulation test cases performed in this thesis research, a value of 4= 0.1
was used.

Although the partial derivatives with respect to cross-range and down-range could
be found by algebraically differentiating the equations for the orthogonal function
expansion, the central differencing algorithm has been maintained as the method for
estimating the partial derivatives. This technique of estimating the partial derivatives
given any mathematical model of the ocean bottom has allowed the mathematical
modeling technique to be changed and improved during research without having to
change the method of calculating the partial derivatives.

The problem geometry is illustrated in Figure 24. The angles of propagation
shown in Figure 24(a) are taken from [Ref.1], where the direction of the unit vector along
a ray path, 7, is determined by the angles ¢ and £. The angle # is measured from the
positive Y axis to the unit vector, and the angle ¢ is measured from the positive X axis to

the projection of the unit vector into the XZ plane. The unit vector 7 can be expressed as

A=uk+vp+wz, 3.3)

where
u=sinfcosg, 3.4)
v=cosf, (3.5)
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and
w =sin fsing, (3.6)

are the dimensionless direction cosines with respect to the X, Y, and Z axes.
Figures 24(b) and 24(c) illustrate a sound ray reflecting off the ocean bottom.
Figure 24(b) shows the tangent plane to the ocean bottom at the point of incidence of a

sound ray. The incident sound ray is denoted by the unit vector 7, and the reflected
sound ray is denoted by the unit vector 7,. The tangent plane is defined by the unit
normal vector to the ocean bottom, denoted 7,. Figure 24(c) presents a two-dimensional

view of the three unit vectors shown in Figure 24(b).
With the partial derivatives of the ocean bottom depth with respect to cross-range

and down-range at the point of incidence of a sound ray available, the normal vector to

the ocean bottom, denoted N , » can be calculated as follows [Ref. 8]:

Nb=—fx£+j>_f22' (3'7)

The unit normal to the ocean bottom is given by

vy (3.8)

where the magnitude of the normal vector to the ocean bottom is

AE JfP+1+ £, (3.9)

The unit vector along a sound ray at the point of incidence on the ocean bottom is denoted
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Figure 24. (a) The unit vector along a ray path, (b) Three-dimensional view of a sound
ray reflected off the ocean bottom in terms of the unit normal to the ocean bottom at the
point of incidence, (¢) Two-dimensional view of the vectors shown in (b).
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A =ux+vy+wz. (3.10)

The unit vector of the reflected ray at the point of incidence, 7,, and the unit
vector 7,, have the same component perpendicular to the unit vector normal to the ocean

bottom, 7, , but the parallel components are opposite. To obtain 71, from 7,, this parallel
component, denoted N ;» must be subtracted twice [Ref.6]. See Figures 24(b) and 24(c).

The equation for 7, is given by
A, =, — 2N, =h, - 2(h, - Ay )Ry, (3.11)

where the inner product, (%, -7,), is a scalar denoted NINB. Substituting Equations (3.8)
and (3.10) into Equation (3.11) yields

o S S S i s o 4
A =ux+v,y+wi=uix+v,y+wz—2NINB| ==X+ y-v==z|, @.12)
[ WA }

r
b

where the dimensionless direction cosines associated with 7, are

L= U, +2NINB|§‘l, (3.13)
b

v, =V, -2NINB|—A:;—|, (3.14)
b

and
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w, =w, +2NL B—'é——
|

In terms of the angles B and ¢ shown in Figure 24(a), angles of reflection are

ﬁr = COS_I(V’), '

and

B. COMPUTER SIMULATION RESULTS

(3.15)

(3.16)

(3.17)

The reflection angle algorithm presented in Section A was incorporated into the
RRA Algorithm FORTRAN ray tracing program. Seven of the ocean bottom models

presented in Section B of Chapter II were selected to test the accuracy of computing first

order partial derivatives and reflection angles for propagating sound rays that reflect off

the ocean bottom. The computer generated estimates of the partial derivatives and the

reflection angles are compared with theoretical values. An isospeed ocean was assumed

in each case in order to facilitate interpretation of the results.
The seven ocean bottom models employed were:

(1) Flat ocean bottom with evenly spaced data, as presented in Figure 2

(2) Planar ocean bottom sloping downward in the z direction only, with no

variation in the x direction, using W, = 0 and W, =1, with evenly spaced

data, as presented in Figure 11

(3) Planar ocean bottom sloping upward in both the x and z directions with evenly

spaced data, as presented in Figure 4

(4) Planar ocean bottom sloping upward in the z direction only, with no variation

in the x direction, using ¥, = 0 and Wz = 1, with evenly spaced data, as
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presented in Figure 8

(5) Planar ocean bottom sloping upward in the z direction only, with no variation
in the x direction, using W, = 0 and W, =1, with unevenly spaced daté, as
presented in Figure 9

(6) Rolling bottom with evenly spaced data, as presented in Figure 19

(7) Flat ocean bottom with evenly spaced data corrupted by a zero-mean random
gaussian noise added to each data point, as presented in Figure 16(a)

In Figures 25 through 31, one ray is launched that propagates in the cross-range
and down-range directions, with several reflections off the ocean bottom models. The ray
is launched from an initial (x,y,z) coordinate of (0,y,,0), and initial launch angles g,
and ¢@,. Each plot shows the propagating ray’s path, a projection of the ray path onto the
ocean bottom, and a projection of the ray path onto the ocean surface. Each plot contains
a legend with the following information:

(1) ‘CASE:’, a brief description of each test case

(2) ‘Y0:’, the launch depth, y,, in meters

(3) ‘DLTS:’, the arc length step size, As, in meters, used in the Recursive Ray

Acoustics (RRA) algorithm

(4) ‘BETAQO:’, the initial launch angle, £,, in degrees

(5) ‘PHIO, the initial launch angle, ¢, in degrees

For each of the seven test cases, a table of data accompanies each figure. The table
compares computer simulation results and theoretical results for the bottom reflections.

The theoretical values of the partial derivatives of the ocean bottom depth with respect to

@2 | B(x2)
&

by taking the partial derivatives of the exact equations that were used to generate the

, are found

cross-range and down-range at the point of incidence,

discrete data for each test case. The theoretical values for the angles of reflection off the

B (%,2) Py (x,2)
& = &

ocean bottom are computed using , and the angles of the incident
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ray f, and ¢,. These values are applied to Equations (3.7) to (3.17) to compute /3, and

@,. The estimated partial derivatives of the ocean bottom depth with respect to cross-

@bg’z) and @bg’z)

in the RRA algorithm using the central differencing algorithm of Equations (3.1) and

range and down-range at the point of incidence, , are computed

(3.2). The estimated angles of reflection for a ray reflected off the ocean bottom

computed in the RRA algorithm are listed as ,B’, and (3,.

Figure 25 shows a ray propagating and reflecting off the flat ocean bottom
depicted in Figure 2. The exact fit of the ocean bottom model to the discrete bathymetric
data results in accurate partial derivatives of the ocean bottom depth with respect to cross-
range and down-range. For all six of the ocean bottom reflections shown in Figure 25,

the central differencing algorithm of Equations (3.1) and (3.2) returns values of

éﬁbg’z) _ B2 _ —0.663172 x 10™? in the computer simulation. These values are a

good double-precision computer approximation of the actual slope of zero, that is,

@bg’z) = é}”g’z) =0. Table 1 shows that the computer simulation results for the

angles of propagation (in degrees) of the reflected ray are extremely accurate.

BOUNCE 8. B, % Error s 4 % Error
1 135.000 | 135.000 | 0.00 | 65.000 | 65.000 | 0.00
2 135.000 | 135.000 | 0.00 | 65.000 | 65.000 0.00
3 135.000 | 135.000 | 0.00 | 65.000 | 65.000 { 0.00
4 135.000 | 135.000 | 0.00 | 65.000 | 65.000 0.00
5 135.000 | 135.000 [ 0.00 | 65.000 | 65.000 0.00
6 135.000 | 135.000 { 0.00 | 65.000 | 65.000 0.00

Table 1. Angles of reflection off a flat ocean bottom with evenly spaced bathymetric data.
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Figure 25. A sound ray propagating and reflecting off a flat ocean
bottom with evenly spaced bathymetric data.
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Figure 26 shows a ray propagating and reflecting off a planar ocean bottom
sloping downward in the z direction only, with no variation in the x direction, as depicted

in Figure 11. The value of the actual slope of the discrete bathymetric data with respect

to down-range is 9)—5—%2 = % =0.05. The first order partial derivative calculated by

the RRA algorithm for each bottom reflection is exactly equal to the slope of the discrete

data, that is, @%{’—Z—) = 0.05. The value of the actual slope of the discrete bathymetric

. . X,z . .
data with respect to cross-range is P (x:2) =0. The first order partial derivative

calculated by the RRA algorithm for each bottom reflection is exactly equal to the slope
of the discrete data, that is, %ﬂ =0, due‘ to the weighting term W, = 0. Table 2

shows that the double-precision computer simulation results for the angles of propagation
of the reflected ray are extremely accurate. Note that although the ray is launched with an

initial launch angle ¢, equal to 40 degrees, the ray reflections off the downward sloping

plane cause the overall ray path to bend such that @, approaches 90 degrees.

BOUNCE 8, B, % Error 4 4 % Error
1 146.062 | 146.062 [ 0.00 | 46.681 | 46.681 0.00
2 141.720 | 141.720 | 0.00 51.810 | 51.810 0.00
3 137.097 | 137.097 { 0.00 55.761 | 55.761 0.00
4 132.277 | 132.277 | 0.00 58.824 | 58.824 0.00
5 127.316 | 127.316 { 0.00 61.210 | 61.210 0.00
6 122,253 | 122253 | 0.00 63.070 | 63.070 0.00

Table 2. Angles of reflection off a planar ocean bottom sloping downward
in the z direction only, with no variation in the x direction.
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Figure 27 shows a ray propagating and reflecting off a planar ocean bottom
sloping upward in both the x and z directions, as presented in Figure 4. The exact fit of
the ocean bottom model to the discrete bathymetric data results in accurate partial
derivatives of the ocean bottom depth with respect to cross-range and down-range. For

all six of the ocean bottom reflections shown in Figure 27, the partial derivatives

produced by the RRA algorithm are @bg’z) = Oj}bg’z) = -0.00625, which are exactly

equal to the partial derivatives of the discrete bathymetric data. Table 3 shows that the
angles of propagation of the reflected rays produced by the RRA algorithm are equal to

their theoretical values.

BOUNCE B, A % Error 4 é % Error
1 100.978 | 100.978 0.00 60.049 | 60.049 0.00
2 101.956 | 101.956 0.00 60.102 | 60.102 0.00
3 102.934 | 102.934 0.00 60.160 | 60.160 0.00
4 103.911 | 103.911 0.00 60.224 { 60.224 0.00
5 104.888 | 104.888 | 0.00 60.292 | 60.292 0.00
6 105.865 | 105.865 0.00 60.366 | 60.366 0.00

Table 3. Angles of reflection off a planar ocean bottom sloping upward
in both the x and z directions.

Figure 28 shows a ray propagating and reflecting off a shoaling ocean bottom as
depicted in Figure 8. The first order partial derivative of the ocean bottom depth with
respect to down-range calculated by the RRA algorithm for each bottom reflection in

double precision accuracy is %}:’Z—)— =-0.166667 , which is equal to the exact slope of

the discrete data, that is, % = -——é—. Table 4 shows that the double-precision
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RECURSIVE RAY ACCUSTICS

ZIKM)

1250 625 0.2625

CASE: 6X8 UP-SLOPE IN Z DIRECTION ONLY, WITH WEIGHTING
YO: 350.0M DLTS: 1.0M
BETAO: 52.5DEG PHIO: 70.0DEG

ocean bottom sloping
with evenly spaced

opagating and reflecting off a planar
with no variation in the x direction,

Figure 28. A sound ray pr
upward in the z direction,

bathymetric data.
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computer simulation results for the angles of propagation of the reflected ray are

extremely accurate.

BOUNCE B, B, % Error 4, é. % Error
1 144.849 | 144.849 0.00 61.881 | 61.881 0.00
2 159.740 | 159.740 0.00 38.411 | 38411 0.00
3 163.176 | 163.176 | 0.00 | -20.368 | -20.368 | 0.00
4 150.783 | 150.783 0.00 | -56.227 | -56.227 | 0.00
5 133.949 | 133.949 0.00 | -67.859 | -67.859 | 0.00

Table 4. Angles of reflection off a planar ocean bottom sloping upward in the z direction
only, with no variation in the x direction, with evenly spaced bathymetric data.

Figure 29 shows a ray propagating and reflecting off a shoaling ocean bottom
with the discrete bathymetric data entered at unevenly spaced intervals as depicted in
Figure 9. Table 5 shows that small errors are introduced by rounding off the input
bathymetric data to five significant digits. The ocean bottom surface fit produced for the
test case shown in Figures 9 and 29 is 7th-order and not /st-order due to the round off
error introduced in the discrete bathymetric data. Overall, the effect on ray propagation is
small. After propagating the sound ray for a path length of over 4 kilometers, the

BOUNCE 8, B. % Error 4 4 % Error
1 144.849 | 144855 | 0.004 | 61.881 | 61.877 | 0.006
2 159.740 | 159.730 | 0.006 | 38.411 | 38.442 | 0.081
3 163.176 | 163.187 | 0.007 | -20.368 | -20.270 | 0.481
4 150.783 | 150.858 | 0.050 | -56.227 | -56.137 | 0.160
5 133.949 | 134.026 | 0.057 | -67.859 | -67.829 | 0.044

Table 5. Angles of reflection off a planar ocean bottom sloping upward in the z direction
only, with no variation in the x direction, with unevenly spaced bathymetric data.
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RECURSIVE RAY ACCUSTICS
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ar ocean bottom sloping

with no variation in the x direction, with unevenly spaced

Figure 29. A sound ray propagating and reflecting off a plan
upward in the z direction,

bathymetric data.
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coordinate (x,y,z) of the point of incidence of the fifth bounce in Figure 29 has been
displaced 2.449 meters as compared to the coordinate (x,y,z) of the point of incidence of
the fifth bounce of the sound ray propagated in Figure 28. Table 6 shows the theoretical
partial derivatives of the ocean bottom depth with respect to down-range and cross-range,
and the estimated partial derivatives computed using the central differencing algorithm at

each bottom reflection location.

BOUNCE 3,(x,2) 3,(%,2) % Error
2 @
1 -0.16666667 | -0.16672578 0.035
2 -0.16666667 | -0.16647425 0.115
3 -0.16666667 | -0.16651536 0.091
4 -0.16666667 | -0.16614634 0312
5 -0.16666667 | -0.16672751 0.037

Table 6. Partial derivative of ocean bottom depth with respect to down range for
reflections off a planar ocean bottom sloping upward in the z direction only, with no
variation in the x direction, with unevenly spaced bathymetric data.

Figure 30 shows a ray propagating and reflecting off a rolling or oscillating
bottom with evenly spaced bathymetric data, as presented in Figure 19. Although the
ocean bottom surface fit is 7th-order, the ocean bottom model closely approximat/es the
discrete bathymetric data generated by Equation (2.32), which is 3rd-order. Table 7
shows that the reflection angles produced by the RRA algorithm are accurate estimates of
the theoretical values. Table 8 compares the estimated partial derivatives produced by the
RRA algorithm and the partial derivatives obtained by differentiating Equation (2.32).

The test cases shown in Figures 28 and 30 are good examples of the insight into
ray propagation provided by using a two-dimensional ocean bottom model in the RRA
ray tracing program. Reflections that turn the ray causing a cross-range displacement can

be easily computed and plotted. It is important to note that the modeling of ray
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RECURSIVE RAY ACOUSTICS

X (M)

Z{KM)

CASE: 5X6 OSCILLATING OCEAN BOTTOM
YO: 800.0M DLTS: 4.0M
BETAO: 75.0DEG PHIO: 70.0DEG

Figure 30. A sound ray propagating and reflecting off a rolling or oscillating ocean
bottom with evenly spaced bathymetric data.
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BOUNCE B, A, % Error 4, 3, % Error
1 115.278 | 115.278 0.000 71.836 71.836 0.000
2 108.991 108.991 0.000 70.577 70.577 0.000
3 145.242 145.255 0.009 90.770 90.747 0.025
4 145.067 145.106 0.027 179.529 | 179.473 0.031
5 108.882 | 108.889 0.007 | -160.551 | -160.560 { 0.005

Table 7. Angles of reflection off a rolling ocean bottom with unevenly spaced

bathymetric data.
BOUNCE ,(x,2) &,(x,z) | % Error &, (x,2) &,(x,2) % Error
& & a &
1 -0.07069 | -0.07069 0.001 -0.07069 | -0.07069 0.001
2 0.04327 | 0.04327 0.000 0.04327 | 0.04327 0.000
3 -0.28082 | -0.28059 0.082 -0.28082 | -0.28059 0.082
4 -0.34430 | -0.34388 0.345 -0.34430 | -0.34388 0.345
5 -0.28010 | -0.27988 0.079 -0.28010 | -0.27988 0.079

Table 8. Partial derivatives of ocean bottom depth with respect to cross range and down
range for reflections off a rolling ocean bottom with unevenly spaced bathymetric data.

propagation is intended to be an exact representation of ray propagation in the ocean.
However, the implementation of mathematical algorithms in a computer simulation
requires approximations to be made. The effort is to model the ocean as accurately as
possible in order to simulate the ocean. The algorithms used in a computer model
designed for real-time ray tracing must be accurate and as fast and as simple as possible
to provide fast calculations. The two-dimensional ocean bottom model produced by the

orthogonal function expansion provides these features.
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Finally, Figure 31 demonstrates the ability of the orthogonal function expansion to
smooth through ocean bottom roughness or noisy input bathymetric data. Figure 31
shows a ray propagating and reflecting off a flat ocean bottom with a zero-mean random
gaussian noise added to the discrete bathymetric data as depicted in Figure 16. With a
standard deviation of the noise at 1% of the ocean bottom depth, the ocean bottom model
provides a smooth fit through the noise. The data in Table 9 is provided only to illustrate
the smoothing effect of the orthogonal function expansion, and not to validate the
reflection angle calculations. Table 9 presents data that compares the theoretical angles
of reflection of the propagating ray reflecting off the ocean bottom for the case presented
in Figure 25 .(no noise) versus the estimated angles of reflection produced by the smooth

fit in Figure 31 (with noise). Table 9 reports the discrepancies as a ‘% difference’ since

BOUNCE B. B, % 4. é. %
Fig. 25 | Fig.31 | Difference | Fig. 25 | Fig. 31 | Difference

135.000 | 134.568 0.32 65.000 | 64.845 0.24

135.000 | 134.786 0.16 65.000 | 64.922 0.12

135.000 | 134.790 0.16 65.000 | 64.924 0.12

135.000 | 134.854 0.11 65.000 | 64.947 0.08

135.000 | 134.550 0.33 65.000 | 64.838 0.25

Al | B W N e

135.000 | 134.295 0.52 65.000 | 64.748 0.39

Table 9. Angles of reflection off a flat ocean bottom with rough or noisy bathymetric
data (Fig.25) versus a flat ocean bottom with no irregularities (Fig.31).

the difference is. due to ocean bottom roughness or noisy data. The average ‘%
difference’ between B, and B, is 0.27%, and the average ‘% difference’ between ¢,

and ;5, is 0.20%. The error produced by successive reflections is cumulative. After

propagating the ray over 14 kilometers, the largest difference introduced by the ocean
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A sound ray propagating and reflecting off a flat ocean bottom with evenly
depth of each data point.

spaced bathymetric data corrupted by a zero-mean random gaussian noise a

Figure 31.




bottom roughness or noise is a 0.52% difference for the angle of reflection, ,B, , off the

rough ocean bottom of Figure 31 as compared to the flat ocean bottom of Figure 25. The

roughness or noise is effectively smoothed by the orthogonal function expansion.
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IV. TWO-DIMENSIONAL ORTHOGONAL FUNCTION
EXPANSIONS OF SOUND-SPEED DATA

A. ORTHOGONAL FUNCTION EXPANSION AND THE BASIS FUNCTIONS

Sound speed data in the ocean is typically measured as a function of depth at a
particular geographic location. In terms of the Cartesian coordinate system presented in
Chapters II and III, sound speed is typically measured at a fixed cross-range and down-
range location (x,z), and the sound speed is a function of depth (y) only. This type of
sound-speed measurement is called a sound-speed profile (SSP). The sound-speed
measurements used in this research as test cases are discrete, and the discrete
measurements may be taken at unevenly spaced depths. The one-dimensional orthogonal
function expansion discussed in [Ref. 2] was demonstrated to be an effective method to
model sound speed when it is a function of one variable, that is, depth. For a ray
propagated down-range using the RRA algorithm, the sound-speed model developed with
the one-dimensional orthogonal function expansion does not vary as a function of down-
range. The one-dimensional orthogonal function expansion models sound speed as a
function of depth only. Multiple sound-speed profiles can be used to model the speed of
sound as a function of depth in areas (or zones) of the ocean. As the sound ray passes
from one zone to another zone, the orthogonal function expansion of the next set of
discrete sound-speed profile data is computed. The technique of zones is presented in
[Ref. 2], and is illustrated in Figure 32(a). A technique is needed that will use multiple
sound-speed profiles taken at different down-range locations to compute the speed of
sound as a function of both depth and down-range. The two-dimensional orthogonal
function expansion technique can be used to compute sound speed as a function of both
depth and down-range given a rectangular matrix of discrete sound-speed data. - The
rectangular matrix of data is made up of multiple discrete sound-speed profiles taken at
different down-range locations. The rectangular matrix of discrete sound-speed data is

illustrated in Figure 32(b).
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Zone 1 Zone 2 Zone 3

sound speed sound speed sound speed

in this zone . inthiszone : in this zone

isbased on ! isbasedon : isbased on

the SSP . the SSP . the SSP

takenat “1 | takenat 2 | takenat ?3
(a)

(b)

Figure 32. (a) Speed of sound as a function of depth (y) only, employed in
areas (zones) of the ocean. (b) Rectangular matrix of discrete sound-speed
data from multiple sound-speed profiles.
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1. Definition of the Two-Dimensional Orthogonal Function Expansion

The technique being employed in this chapter to model sound speed as a function
of depth and down-range is the same mathematical technique that was presented in
Chapter II to model océan bathymetry as a function of cross-range and down-range. The
two-dimensional orthogonal function expansion used to fit a smooth surface to a

rectangular matrix of sound-speed data as a function of depth and down-range is given by

é0,2) =Y 0, (1,2), @4.1)

n=0

where the coefficient

Cn = (Cm (yij ’zy)’¢c" (yij 9zy')>,

M"}‘ M‘x )
=chm(yy"zij)¢:"(yy:zy)’ n=0,1s"‘aNc ’ (42)

i=l j=1

represents the inner product of the measured discrete sound-speed data c,(y;,z;), for
i= 1,2’---»Mc, and j= 1,2,...,M,,’ , with the set of orthonormal basis functions
@, (,2), n=0,1,...; N, , evaluated at the discrete depth(y,) and down-range(z,) values

corresponding to the discrete sound-speed data. The order of the expansion is represented

by N, . The discrete data must be entered in a matrix, where M, is the total number of
depth rows and M, is the total number of down-range columns. The matrix is, in

general, rectangular, not square, and the data is, in general, unevenly spaced in both the y
and z directions. _
2. The Basis Functions from the Generating Functions

As in Chapter II, the set of orthonormal basis functions ¢, (y,z), n=01,...,N_,

were determined by using the Gram-Schmidt proéedure [Ref. 3] on the set of generating
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functions f,(y,z)=(y+z)", n=01...,N,. The generating function chosen is of the
same form as in Chapter II.  The general equation of the Gram-Schmidt

Orthogonalization Procedure is given by

(£,0/2),0.,(»2)
(0., (32,0, (3.2)

s (£0:20,,0 ’z)>> 0. (h7), n=0l12... (43)

(.., 0r20.,, (7:2)

@, (y,Z) = f,,(y,Z)" ?., (y,z)——...

The Gram-Schmidt procedure to find the basis functions, ¢, , for n=0,1,...,N,, is the

same as the procedure detailed in Section A of Chapter II, and it will not be repeated here.
As a means of comparison to the derivation shown in Chapter II, the final equations for
the first three basis functions are listed below:
The Oth-order basis function is given by
9, (»2)=1. (4.4)

The Ist-order basis function is given by

@, (y2)=y+z-W, . 4.5)
The 2nd-order basis function is given by
@, (y,z)=(y+z)2 Wy —Woly+z-Wyl . (4.6)

The use of the two-dimensional orthogonal function expansion to model sound

speed as a function of depth and down-range gives similar results as the model of
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bathymetric data presented in Chapter II. The data may be unevenly spaced. As in

Chapter II, where N, =7 is the maximum order fit, the maximum order sound-speed fit
is N, =7. Noise in the input discrete sound-speed data does not affect the overall fit.
Also, the mean-squared error (MSE) is computed for N, =0,1,...,7. The value of N,

that produces the lowest mean-squared error is used to reconstruct the sound-speed data.
B. COMPUTER SIMULATION RESULTS OF SOUND-SPEED FITS

The two-dimensional orthogonal function expansion technique to model sound-
speed data was implemented in the RRA Algorithm FORTRAN ray tracing program.
The results of various test cases are presented graphically to demonstrate both the
successes and the shortcomings of this method of modeling discrete sound-spéed data.
The discrete sound-speed data is made up from three sound-speed profiles (sound-speed
versus depth) taken at three different down-range locations. The graphs, presented in
Figures 33 to 41, show the discrete sound-speed data points as large black dots (o). The
estimated fit to the discrete data computed by the orthogonal function expansion is
presented as a mesh of lines to represent the two-dimensional, continuous surface.

The technique of using a two-dimensional orthogonal function expansion to
provide a continuous surface fit to discrete data is the same technique that was tested in
Chapter II. The general conclusions and shortcomings presented in Chapter II apply in
this chapter. Even with the shortcomings discussed in Chapter II, the testing of this
technique to fit sound-speed data will validate the FORTRAN subroutines that compute
the two-dimensional orthogonal function expansion of sound-speed data in the RRA
algorithm computer program. The test cases will also provide specific conclusions and
shortcomings of this technique when it is applied to fit discrete sound-speed data.

Each plot contains a legend with the following information:

(1) ‘CASE?’, adescription of the test case

(2) ‘SIGMAC:’, the value of the standard deviation, o, of a randomly
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generated zero-mean gaussian noise added to each sound-speed data point
(3) the order of the fit, N_ , based on the minimum mean-squared error
criterion
(4) ‘MSEQ:’ to ‘MSE7.’, the mean-squared error for N, =0,1,2,...,7
Figures 33 and 34 demonstrate the fit of the most basic test case, a constant speed
of sound. The exact equation used to generate the 6 x 3 rectangular matrix of data for

Figures 33 and 34 is given by
c(y,2z) =1500. - @47

In both test cases, the fit is an exact Oth-order fit with the orthogonal function expansion
returning a value of 1500 m/s for any combination of depth and down-range. Figure 34
shows that the data may be entered at unevenly spaced coordinates without affecting the
fit. ,

Figures 35, 36, and 37 demonstrate exact Ist-order fits. The exact equation used to

generate the 6 x 3 rectangular matrices of data for Figures 35, 36, and 37 is given by

(»,2) = 1490 +0.02y, (4.8)

which represents sound speed that is linearly increasing as a function of depth. Figure 35
reveals the same shortcoming that was found with the /sz-order bathymetric fits presented
in Chapter II. The corner of the surface fit at the maximum depth and minimum down-

range location (y = 1000m, z = 0.0 km) is below the discrete sound-speed data points; the

corner of the surface fit at the minimum depth and maximum down-range location

(¥ =00m, z=10km) is above the discrete sound-speed data points. The fitted surface

approximates a Ist-order planar surface that slopes upward equally in both the y and z

directions. Therefore, the fitted plane is below half of the discrete sound-speed data
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CASE: CONSTANT SOUND SPEED WITH EVENLY SPACED DATA

SIGMAC: 0.0M  OTH-ORDER MMSE SURFACE FIT

MSEQ: 4.098x10° MSE2: 4.098%10° MSE4: 4.098%10° MSE6: 4.098x10™
MSEl: 4.098x10° MSE3: 4.098x10° MSES: 4.098%10° MSE7: 4.098x107

Figure 33. Constant sound-speed with evenly spaced data.
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CASE: CONSTANT SOUND SPEED WITH UNEVENLY SPACED DATA

SIGMAC: 0.0M OTH-ORDER MMSE SURF’HCE FIT

MSEQ: 4. 098*10 MSE2: 4. 098*10 MSE4: 4. 098>€10 MSEG: 4. 098*10
MSE1: 4.098%10° MSE3: 4.098x10° MSES: 4.098x10° MSE7: 4. 098x10”

Figure 34. Constant sound-speed with unevenly spaced data.
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CASE: SS LINEARLY INCREASING, EVENLY SPACED DATA NO WT

SIGMAC: 0.0M 7TH-ORDER MMSE SURFHCE FIT

MSEQ: 8. 400*10 MSE2: 4. 941%10 MSE4: 4. 827*10 MSE6: 4. 825)(10
MSEl: 4.941%10° MSE3: 4.827x10° MSES: 4. 825%10° MSE7: 4.663x10°

Figure 35. Sound-speed that is linearly increasing as a function of depth,
with no variation in the down-range direction, modeled without
weighting x and z separately, with evenly spaced data.
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CASE: SS LINEARLY INCREASING, EVENLY SPACED DATA WITH WT

SIGMAC: 0.0M 1ST-0RDER MMSE SURF‘HCE FIT

MSEC: 8. 400><10 MSE2: 5. 215*10 MSE4: 5. 215*10 MSE6: S. 215*10
MSEl: 5.215%10™ MSE3: 5.215x10° MSES: 5.215%10° MSE7: 5. 215%10™

Figure 36. Sound-speed that is linearly increasing as a function of depth,
with no variation in the down-range direction, using W, =1 and W, =0,

with evenly spaced data.
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CASE: 55 LINEARLY INCREASING, WITH UNEVENLY SPACED DATA

SIGMAC: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 7.895x10° MSE2: 1.321x107 MSE4: 1.311%10” MSE6: 1.275%107
MSEl: 1.370%107 MSE3: 1.317x107 MSES: 1.290%107° MSE7: 1.157x107

Figure 37. Sound-speed that is linearly increasing as a function of depth,
with no variation in the down-range direction, using W, =1 and ¥, =0,

with unevenly spaced data.
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points in the lower half of Figure 35, and above half of the discrete sound-speed data
points in the upper half of Figure 35. The best fit is limited in its accuracy due to the fact
that y and z are summed in every term of the orthogonal function expansion. As in
Chapter I, an independent weighting with respect to y and an independent weighting with
respect to z need to be added to the orthogonal function expansion to correct this
shortcoming. With the addition of weighting factors, the orthogonal function expansion

becomes

NC
é,2) =D .0, W,y W.2), (4.9)

n=0

where W, and W, are weighting factors to introduce independence in y and z.

Figure 36 presents the same test case presented in Figure 35, except that the
weighting factors, #, and W,, were added as shown in Equation (4.9) with #, =1 and
W, =0. The result is an exact /st-order fit. Figure 37 presents the same test case with
the discrete sound-speed data entered at unevenly spaced locations. The fit determined by
the orthogonai function expansion is 7th-order due to using only five significant digits for
the discrete sound-speed data. The overall fit is /sr-order; the higher order terms of the
orthogonal function expansion only affect the lower significant digits of the estimated

value of sound speed.
Figures 38, 39, and 40 present a test case with discrete sound-speed data

generated by the exact equation given by

¢(»,2) = 1525- 0,05y, (4.10)

which represents sound-speed that is linearly decreasing as a function of depth. In Figure
38, no weighting is applied, and the orthogonal function expansion produces a poor fit.
In Figures 39 and 40, the weighting factors, W, and W,, were added as shown in
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CASE: SS LINEARLY DECREASING, EVENLY SPACED DATA NO WT

SIGMAC: 0.0M  7TH-ORDER MMSE SURFACE FIT

MSEQ: 5.250%10° MSE2: 3.088%10° MSE4: 3.017»10° MSE6: 3.016x10°
MSEl: 3.088x10° MSE3: 3.017x10° MSES: 3.016x10° MSE7: 2.914x10°

Figure 38. Sound-speed that is linearly decreasing as a function of depth,
with no variation in the down-range direction, modeled without
weighting x and z separately, with evenly spaced data.
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CASE: S5 LINEARLY DECREASING, EVENLY SPACED DATA WITH WT
SIGMAC: 0.0M 1ST-0RDER MMSE SURFACE FIT

MSEQ: 5.250%10° MSE2: 7.078x%10° MSE4: 7.078x10° MSES: 7.078x10°
MSEl: 7.078%10™ MSE3: 7.078x10° MSES: 7.078%10° MSE7: 7.078x%10°

Figure 39. Sound-speed that is linearly decreasing as a function of depth,
with no variation in the down-range direction, using W, = land W, =0,

with evenly spaced data.
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CASE: SS LINEARLY DECREASING, WITH UNEVENLY SPACED DATA

SIGMARC: 0.0M  7TH-ORDER MMSE SURFACE FIT :
MSEQ: 5.120%10° MSE2: 7.723x%107° MSE4: 6.346%10° MSES: 6.023%10"
MSEl: 8.196%107 MSE3: 7.668x10° MSES: 6.024x10° MSE7: 6.013%107

Figure 40. Sound-speed that is linearly decreasing as a function of depth,
with no variation in the down-range direction, using W, = land W, =0,

with unevenly spaced data.
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Equation (4.9) with W, =1 and W, =0. An exact Ist-order fit results in Figure 39.

Figure 40 demonstrates that the discrete sound-speed data may be unevenly spaced
without affecting the overall fit.

Figure 41 demonstrates a more complicated test case. The discrete sound-speed
data used in this test case represents three different sound-speed profiles taken at three
different down-range locations. The discrete data for the constant sound-speed profile at
z=00km is generated by Equation (4.7). The discrete data for the linearly decreasing
sound-speed profile at z = 05km is generated by Equation (4.10). The discrete data for

the parabolic sound-speed profile at z =1.0km is generated by the exact equation given

by
c(y,z) = 1490 + 0.0001(y — 500)°. (4.11)

The three sound-speed profiles form a 6 x 3 rectangular matrix of discrete sound-speed
data. The result from the orthogonal function expansion is a smooth surface fit that
attempts to transition from the constant sound-speed profile to the linearly decreasing
sound-speed profile to the parabolic sound-speed profile. The smooth transition is
obtained. However, at the down-range locations where the sound-speed profiles were
taken, the characteristics of the speed of sound as a function of depth have been distorted.
The distortion can be seen more clearly by examining a two-dimensional plot of the fitted
speed of sound versus depth taken at the fixed down-range locations of the three sound-
speed profiles.

Figures 42, 43, and 44 show two-dimensional plots of the speed of sound versus
depth for the test case presented in Figure 41. The plots show the discrete sound-speed
data points as large black dots (¢ ). The estimated fit to the discrete data computed by the
two-dimensional orthogonal function expansion is presented as a continuous curve.

Significant distortion resulted.
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CASE: VARYING SOUND SPEED, CONSTANT-LINEAR-PARABOLIC

SIGMAC: 0.CM 7TH-ORDER MMSE SURFACE FIT

MSEQ: 2. 358*10 MSE2: 2. 157*10 MSE4: 8. 409*10 MSEG: 8. 813*10
MSE1: 2.182x10° MSE3: 1.109%10° MSES: 8.929x10° MSE7: 8. 457x10°

Figure 41. Sound-speed that varies in the down-range direction, with the discrete
sound-speed data constant as a function of depth at z = 0.0 km, linearly decreasing as a
function of depth at z = 0.5 km, and parabolic as a function of depth at z =1.0km,
modeled without weighting x and z separately, with evenly spaced data.
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CASE: VARYING SOUND SPEED, CONSTANT-LINEAR-PARABOLIC SSP AT Z = 0.000 KM

ZONE: 1 SIGMAC: 0.0M/S . 7TH-ORDER MMSE SURFACE FIT

MSEQ: 2.358%10° MSE2: 2.157%10° MSE4: 9.409%10° MSEG: 8.813x10°
MSE1: 2.182x10° MSE3Z: 1.109%10° MSES: 8.929%10° MSE7: 8.457%10°

with the discrete sound-speed data constant as a function of depth at z

Figure 42. Sound-spe

without weighting x and z separately, with evenly spaced data.
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0.5 km for the test case shown in Figure 41,

with the discrete sound-speed data linearly decreasing as a function of depth at

z = 05 km, modeled without weighting x and z separately, with evenly spaced data.

Figure 43. Sound-speed versus depth at z
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Figure 44. Sound-speed versus depth at z = 1.0km for the test case shown in Figure 41,

with the discrete sound-speed data parabolic as a function of depth at z = 1.0 km, modeled

without weighting x and z separately, with evenly spaced data.
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The distortion of the fitted sbund-speed as compared to the discrete sound-speed
profiles is due to the smoothing effect of the orthogonal function expansion. If the

orthogonal function expansion was computed to a higher order using N, > 7, then the

sound-speed surface fit would more closely match the changes in the discrete sound-
speed profiles. The distortion is also a result of the set of generating functions used. As
discussed in Chapter II, the surface fits have a constant value for the estimated sound

speed across lines of contour given by
y+z=C, (4.12)

where C is a positive constant. Therefore, the surface fits have no curvature along these
contours. The amount of distortion for different sound-speed profiles will depend on how
well the rectangular matrix of discrete sound-speed data matches the form of the
generating functions. For a given set of data, the fit that is obtained may be acceptable,
but the technique is not versatile enough to provide acceptable fits in all cases.

As in Chapter II, the method of orthogonal function expansion to fit two-
dimensional, discrete data provides a starting point for the use of this technique to
compute a continuous model of the speed of sound as a function of depth and down-
range. The orthogonal function expansion needs more variability in the maximum order
fit that is selected, N,. The technique could be improved by using a different set of
generating functions that will not return constant values for the speed of sound across
lines of contour given by Equation (4.12). For two-dimensional sound-speed fits, the use
of this technique has an additional shortcoming. For the sound-speed profiles used as
input data, their basic shape as a function of depth may be distorted. A better and simpler
technique may be to use a one-dimensional orthogonal function expansion to fit each
sound-speed profile separately, and then average or interpolate between the nearest one-

dimensional sound-speed fits.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis had two primary goals. First, to derive and test the two-dimensional
orthogonal function expansions of ocean bathymetric and sound-speed data. This
technique provides a continuous mathematical model, from unevenly spaced discrete
input data, of bathymetry as a function of cross-range and down-range, and the speed of
sound as a function of depth and down-range. The second goal was to implement the
expansions in the Recursive Ray Acoustics (RRA) Algorithm FORTRAN program to
evaluate the successes and shortcomings of this technique to model the ocean bottom and
the speed of sound. In order to implement the technique as the ocean bottom model in the
RRA Algorithm, a method of computing accurate angles of reflection also had to be
developed. The orthogonal function expansion has many positive features. It takes
discrete input data that may be unevenly spaced, and provides a fit to the discrete data that
smoothes through noise or rapid variations in the data. The result is a continuous two-
dimensional model of the discrete data. The major shortcoming is that the technique is
limited by the choice of the set of generating functions uséd. Also, the maximum order
fit that is implemented has been limited to seventh order. The choices for the set of
generating functions and the maximum order fit were based upon previous research with
the one-dimensional orthogonal function expansion [Ref. 2].

The effort to provide a more sophisticated one-dimensional ocean bottom model
for the RRA Algorithm, other than a flat ocean bottom, began in 1991 with the use of
Spatial Fourier Series [Ref. 4]. The technique met with limited success. The one-
dimensional orthogonal function expansion was developed and presented in 1994 [Ref.
2]. The one-dimensional orthogonal function expansion was successful, and the
technique was used to model both bathymetric and sound-speed data in the RRA
Algorithm. The two-dimensional orthogonal function expansion may yet prove to be a
viable tool in modeling both ocean bathymetric data and sound-speed data, but its

immediate utility, based on the analysis conducted, is limited.
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It is recommended that future research apply higher-order fits and test generating
functions that will correct the shortcomings produced by the set of generating functions
used in this analysis. A possible alternative technique could be a two-dimensional
orthogonal function expansion that is based on the generating functions of the one-
dimensional case [Ref. 9]. The form of the orthogonal function expansion used to fit a
rectangular matrix of discrete ocean bathymetric data as a function of cross-range and

down-range would then be given by

Ny Ny

Ps(1,2) = 22 by, W5, (2), (5-)
n=0 m=0
where ¢, (x), n=0,,...,N,, and y, (z), m= 0,,...,N,, are the orthogonal functions

obtained by applying the Gram-Schmidt Orthogonalization Procedure to the generating

functions given by

f[,(x)=x", n=01...,N,, (5.2)
to find ¢, (x)., and
8,(2)=2z", m=0,L...,N,, (5.3)

to find v, (z). The coefficients b n=01...,N, and m=0,,...,N,, would be

obtained by computing the inner product of the measured discrete ocean bathymetric data

with the orthonormal basis functionsg, (x)y, (z). This technique would provide a

greater degree of freedom to fit the surfaces with more independence in x and z. For a

seventh-order fit, N, =7, this technique would produce 64 coefficients
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(bogsb015-+->016,0,7) as opposed to the eight coefficients developed in the. technique

presented in Chapter II.

The ray trace plots presented in Chapter III provide insight into the complexity of
ray propagation in the ocean. The study of sound propagation involving multiple ocean
bottom reflections requires a good two-dimensional ocean bottom model. With the
continued interest of the United States Navy in understanding the acoustic environment in
the littorals, more advanced study in this technique of mathematical modeling is

warranted.
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